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1 Introduction and summary

Many known properties of Dirichlet six branes in type IIA string theory [1, 2, 3] have

been reproduced [4, 5, 6, 7] by using the known identification [8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19] of these branes with Kaluza-Klein monopoles [20, 21] in M-theory. In this

paper we shall use this identification to derive some properties of these D-branes which

cannot be derived using the standard string perturbation theory.

The first system we shall analyse is the brane–anti-brane configuration. This cor-

responds to a complicated interacting system in perturbative string theory due to the

appearance of tachyonic open string states for sufficiently small separation between the

brane and the anti-brane [22, 23, 24]. However, by mapping it to the known Kaluza-Klein

dipole solution [21, 25] in M-theory, we show that the dynamics simplifies in the strong

coupling limit of string theory. The dipole solution in eleven dimensional supergravity

theory can be interpreted as a static brane–anti-brane configuration in type IIA string

theory, suspended in an external magnetic field [26]. We calculate the mass of the open

string stretched between the brane and the anti-brane by identifying it with the M-theory

membrane stretched along the bolt of the Kaluza-Klein dipole solution. While this an-

swer agrees with the expected answer from string theory for large separation between the

branes, it approaches a finite value proportional to mstringgstring when the separation be-

tween the brane and the anti-brane vanishes. In perturbative string theory, the classical

contribution to the mass vanishes in this limit, and quantum fluctuations on the open

string makes this into a tachyonic state [22].

The second system that we shall analyze will be a D- six brane in the presence of an

orientifold six plane [1, 27]. For this we use the identification of the orientifold plane with

the Atiyah-Hitchin space of M-theory [28, 7]. In string perturbation theory, the classical

mass of the open string, stretched between the D- six brane and its image, is proportional
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to the distance between the D-brane and the orientifold plane. When the D-brane is

on top of the orientifold plane, the classical mass vanishes, but the massless states get

projected out, and the lowest mass state from this sector has mass of order unity in

the string scale. From the M-theory viewpoint, on the other hand, this configuration of

coincident D-brane and orientifold plane is described by the double cover of the Atiyah-

Hitchin space [28], and the open string stretched between the D-brane and its image is

represented by a membrane wrapped around the bolt of the Atiyah-Hitchin space. The

classical mass of this state is proportional to the area of the bolt, and when converted to

the string scale, this mass again turns out to be proportional to mstringgstring. This is an

exact result in the strong coupling limit of string theory.

In the final section we shall deviate somewhat from the main theme of the paper,

and use the M-theory–IIA correspondence to derive a known result —the anomalous

gravitational coupling of the six brane. This result was derived in refs. [29, 30] by other

methods. We derive this by starting from the C ∧ X8 coupling in M-theory [31, 32],

and integrating it over the transverse space of the six brane in M-theory. The same

method can be used to prove the existence of a similar coupling on the orientifold plane.

This has been derived using different method in a recent paper by Dasgupta, Jatkar and

Mukhi [33].

2 Brane–anti-brane configuration

Our starting point for studying the brane–anti-brane configuration will be the Kaluza-

Klein dipole solution given in [21]. The solution embedded in eleven dimensions is de-

scribed by the metric

ds2 = −dt2 +
10∑
m=5

dymdym + (r2 − a2 cos2 θ)[∆−1dr2 + dθ2] (2.1)

+ (r2 − a2 cos2 θ)−1[∆(dx4 + a sin2 θdψ)2 + sin2 θ((r2 − a2)dψ − adx4)2],

where,

∆ = r2 − 2Mr − a2 . (2.2)

M and a are parameters labelling the solution. Let us define

κ =

√
M2 + a2

2M(M +
√
M2 + a2)

, Ω = κ
a

√
M2 + a2

, (2.3)

and

φ = ψ − Ωx4 . (2.4)

The solution (2.1) is regular if r ≥ r0 where

r0 = M +
√
M2 + a2 , (2.5)

and x4 and φ have periodicities 2π/κ and 2π respectively. If we use x4 and φ as inde-

pendent angular coordinates, then the surface r = r0 is a fixed point of the killing vector
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∂/∂x4 and represents a bolt. (2.1) represents a valid solution of M-theory in the limit of

large M , when the curvature associated with the solution is small, and hence the higher

derivative terms in the Lagrangian are not important.

In appropriate coordinate system, this describes a magnetic monopole–anti-monopole

pair suspended in an external magnetic field [26]. In order to see this, we shall first

analyze this solution for a >> M . First of all, note that in the region (r − a) >> M , ∆

can be approximated as

∆ ' (r2 − a2) . (2.6)

Substituting this into the metric (2.1), and defining new coordinates ρ and θ̄ through the

relations

ρ sin θ̄ =
√
r2 − a2 sin θ , ρ cos θ̄ = r cos θ , (2.7)

we can bring the metric (2.1) into the form

ds2 = −dt2 +
10∑
m=5

dymdym + (dx4)2 + dρ2 + ρ2(dθ̄2 + sin2 θ̄dψ2) . (2.8)

This appears to be the standard flat metric on R9,1 × S1. However the background is

non-trivial because of the twisted boundary condition on x4 and ψ (as x4 gets translated

by 2π/κ, ψ must get translated by 2πΩ/κ in order to have an identification of points in

space-time). There are many ways of choosing independent angular coordinates —one of

them being x4 and φ defined in eq. (2.4)— but we shall take the independent coordinates

to be x4 and

φ̃ = φ+ κx4 = ψ + (κ− Ω)x4 . (2.9)

The asymptotic space-time may then be interpreted as M-theory compactified on S1

labelled by x4, in the presence of a magnetic flux [34, 35, 36]. The magnetic field on the

z axis is given by

B = Ω− κ ' −
M

4a2
for a >> M . (2.10)

We shall now turn to the interior region where (r − a) is of order M . In order to

properly interpret the solution, we also consider the single monopole solution [20, 21]

ds2 = −dt2 +
10∑
m=5

dymdym + ds2
TN , (2.11)

ds2
TN = (1 +

4m

r
)d~r2 + (1 +

4m

r
)−1(dx4 + 4m(1− cos θ)dφ)2 , (2.12)

where x4 has periodicity 16πm. This represents a Kaluza-Klein monopole of magnetic

charge 4m. We can interpret both the monopole and dipole solution as solutions in the

same theory by matching the x4 periodicity in the two theories. This gives

m =
1

8κ
. (2.13)

We shall now show that the solution (2.1) corresponds to a monopole-antimonopole pair,

separated by a distance 2a for large a. This will be done by showing that i) in the limit
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of large a, the metric around r = r0, θ = 0 (θ = π) reduces to that of a Kaluza-Klein

anti-monopole (monopole), and ii) for finite a, but close to the point r = r0, θ = 0 (θ = π)

the metric agrees with the metric close to a Kaluza-Klein anti-monopole (monopole). For

this we introduce a new set of coordinates:

(r0 −M) sin2 θ = ρ̃(1− cos θ̃), 2(r − r0) = ρ̃(1 + cos θ̃) . (2.14)

First we focus on the region near (r = r0, θ = 0) and take the a → ∞ limit keeping

(r − r0, θ
√
a) finite. In this limit, the metric (2.1) reduces to

ds2 = −dt2 +
10∑
m=5

dymdym +
(
1 +

M

ρ̃

)−1
(dx4 −M(1− cos θ̃)dφ̃)2

+
(
1 +

M

ρ̃

)
(dρ̃2 + ρ̃2dθ̃2 + ρ̃2 sin2 θ̃dφ̃2) . (2.15)

The coordinate ranges are 0 ≤ ρ̃ <∞, 0 ≤ θ̃ ≤ π. Furthermore, x4 and φ̃ can be taken to

be independent angular coordinates with periods 4πM and 2π respectively. Thus we see

that (2.15) represents the metric of a Kaluza-Klein anti-monopole with magnetic charge

−M . Similar analysis can be carried out near (r = r0, θ = π).

On the other hand if we keep a finite and examine the solution close to the region

ρ̃ = 0, the metric reduces to

ds2 = −dt2 +
10∑
m=5

dymdym + (2κρ̃)(dx4 − (2κ)−1(1− cos θ̃)dφ̃)2

+(2κρ̃)−1(dρ̃2 + ρ̃2dθ̃2 + ρ̃2 sin2 θ̃dφ̃2) . (2.16)

Using eq. (2.13), we can recognise it as the metric given in eqs. (2.11), (2.12) close to

the Kaluza-Klein anti-monopole. This is a reflection of the fact that in the choice of

coordinates we have made, the metric near r = r0, θ = 0 represents an anti- self-dual

NUT [25]. Similarly, the metric near r = r0, θ = π represents a self-dual NUT and hence

a magnetic monopole.

As has already been stated, the Kaluza-Klein monopoles in M-theory can be inter-

preted as D- six branes of type IIA string theory [9]. Thus the solution (2.1) describes

a static D6-brane–anti-D6-brane configuration of type IIA string theory. The distance

between the brane and the anti-brane can be defined to be the geodesic distance between

the points (r0, θ = 0) and (r0, θ = π). This is given by

l =
∫ π

0

√
r2

0 − a2 cos2 θ dθ ' 2a for a >> M. (2.17)

Existence of brane anti-brane solution at arbitrary separation l (parametrized by a) shows

that the static force between the brane and the anti-brane vanishes. Since the gravita-

tional and electromagnetic interaction between a brane and an anti-brane are both attrac-

tive [3, 22, 23, 24], there is a net attractive force between them. This is cancelled by the

repulsive force between the brane and the antibrane, induced by the external magnetic
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field. For monopole and anti-monopole carrying magnetic charges ±M and separated by

a distance 2a, this repulsive force is equal to −2MB 'M2/2a2 for large a. On the other

hand, the magnetic attraction betwen this pair is M2/4a2. The gravitational (and scalar

induced) attraction is equal in magnitude to the magnetic attraction. Thus we see that

the net attractive force cancels the net repulsive force, giving rise to a static configuration.

We shall now identify the open string state stretched between the brane and the anti-

brane, and calculate its classical mass. In analogy with the results of ref. [7] this state

must be represented by an M-theory membrane wrapped on a suitable two cycle. For

the dipole solution, such a two cycle is provided by the surface r = r0, which appears as

a bolt if we choose φ and x4 as the independent angular coordinates. θ and φ are good

coordinates on the bolt, and the metric on the bolt is given by

ds2
B = (r2

0 − a
2 cos2 θ)−1(r2

0 − a
2)2 sin2 θdφ2 + (r2

0 − a
2 cos2 θ)dθ2 . (2.18)

The area of this surface in this metric is given by

A = 4π(r2
0 − a

2) = 8πM(M +
√
M2 + a2) . (2.19)

For large a, this reduces to 8πMa, which is simply the product of the period 4πM of x4,

and the separation 2a between the brane–anti-brane pair. If TM denotes the membrane

tension in M theory then this state has mass TMA. Since TM times the period of the x4

direction can be identified as the string tension of type IIA theory, we see that for large

separation between the branes, the mass of the string is given by the product of the string

tension and the separation, —as expected from perturbative string analysis.

In fact, not only is the mass formula reproduced correctly for large a, but the shape

of the membrane also has the right form so as to be interpreted as a string of length 2a.

To see this, let us note from (2.18) that for fixed θ, the radius of the φ direction is given

by:
(r2

0 − a
2) sin θ√

r2
0 − a2 cos2 θ

∫ 2π

0
dφ ' 4πM for large a, θ 6= 0, π . (2.20)

Thus away from the north and the south pole (θ = 0, π) the bolt has the shape of a cylinder

of radius 4πM . As seen from (2.1), the compact direction on the cylinder is spanned by

φ = φ̃ + κx4 at fixed value of x4 + a sin2 θψ. For large a and finite θ, this means that

the compact direction is spanned by x4 at fixed φ̃. The length of this cylinder, stretched

along the θ direction, is equal to l defined in (2.17). A membrane wrapped around such

a surface clearly looks like an elementary type IIA string stretched from θ = 0 to θ = π,

covering a distance 2a.

When a is of the order of M , the ten dimensional interpretation is not reliable, re-

flecting the fact that the magnetic field required to hold the brane–anti-brane pair apart

produces curvature in the non-compact direction which is of the same order as the size

of the compact direction [26, 34, 35, 36]. Note, however, that the solution is completely

non-singular in eleven dimensions. For a = 0, we again have a ten dimensional inter-

pretation of the solution if we take φ instead of φ̃, and x4 as the independent angular
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coordinates. In this case the asymptotic space has the structure of R9,1 × S1 with flat

metric. Furthermore the metric does not have any g4φ component, showing that the

solution has zero magnetic field. Thus it is natural to interpret this configuration as a

coincident brane-anti-brane pair.

The alert reader may raise several objections to this proposal. First of all, note that if

we continue to use φ̃ and not φ as the azimuthal coordinate of the transverse space, then

the solution for a = 0 can be interpreted as a monopole–anti-monopole pair at the two

poles of the surface r = r0 [26]. From (2.17) we see that the separation l remains finite

even for a = 0. Note, however, that when the brane-anti-brane separation a is of the order

of their internal size, the notion of distance between them becomes ambiguous, as the

presence of the brane (and the anti-brane) significantly modifies the ambient metric. Thus

l is not a good measure of the brane anti-brane separation in this range of parameters.

A more appropriate measure of the brane anti-brane separation might be the strength of

the magnetic field that is required to hold them apart. As seen from (2.10), if we continue

to use φ̃ as the azimuthal angle, then the magnetic field B does reach a finite value as

a → 0. Furthermore, if we reduce a further by making it negative, keeping κ fixed, the

magnetic field continues to increase in magnitude.

This might be taken as an evidence for further shrinkage of the brane–anti-brane

separation. However, from (2.1), it is clear that in M-theory configurations with positive

and negative a are related to each other by a simple coordinate transformation. Thus

even if we interprete the negative a values as a description of smaller brane–anti-brane

separation, we reach the conclusion that this configuration is equivalent to one with a

larger brane–anti-brane separation. From this point of view, the a = 0 solution represents

the minimum possible separation between the brane and the anti-brane —in the same

sense that the self-dual radius represents the minimum radius of compactification of a

string theory— as long as the force that holds them apart is induced by an external

magnetic field. Whether we call this a configuration of coincident brane–anti-brane pair

or not is a matter of convention. Due to the fact that precisely at this point there is

a choice of coordinate system that makes the solution free from any magnetic field, we

choose to call it coincident brane–anti-brane pair.

When the separation between the brane and the anti-brane vanishes, the classical

mass of an open string stretched between them goes to zero in perturbative string theory.

The quantum contribution to the mass will be of the order of the string scale and makes

this into a tachyonic state [22, 23, 24]. In contrast, in the M-theoretic description, the

area of the bolt, as given in (2.19), reduces to a finite non-zero answer 16πM2 for a = 0.

Noting that for a = 0 the radius of the x4 direction is R = 4M , we see that this mass

is given by πR2. It is instructive to express this mass in the conventional string units.

For this we note that so far in our calculation we have set the eleven dimensional plank

scale to unity, but now we can explicitly put in that scale. In this case the mass of the

wrapped membrane is proportional to m3
pR

2, where mp denotes the eleven dimensional

Plank mass. By standard duality chasing, we can express this in string units [37]. If mS

denotes the string mass scale, and gS the string coupling constant in ten dimensions, then

6
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the relevant relations are

m3
pR = m2

S, gS = (mpR)3/2 . (2.21)

Using these relations we see that for a = 0 the mass of the wrapped membrane is propor-

tional to mSgS.

Finally we note that even though the solution does not suffer from the instability due

to tachyonic open string modes stretched between the D-branes, there are other instabil-

ities in the solution. In particular, since it represents a brane–anti-brane pair balanced

precariously in a magnetic field, a slight relative displacement of the pair, without an

accompanying change in the magnetic field, will throw the configuration off balance [26].

This, however, represents a known physical phenomenon, and does not correspond to any

new feature of the brane–anti-brane interaction.

3 Brane on an orientifold plane

An orientifold six plane of type IIA string theory is described in M-theory [28, 7] by the

Atiyah-Hitchin metric [38, 39]

ds2 = −dt2 +
10∑
m=5

dymdym + (8m)2ds2
AH , (3.1)

ds2
AH = f(ρ)2dρ2 + a(ρ)2σ2

1 + b(ρ)2σ2
2 + c(ρ)2σ2

3 , (3.2)

where f , a, b and c are functions defined in ref. [39],

ρ = r/8m, (3.3)

and

σ1 = − sinψdθ + cosψ sin θdφ ,

σ2 = cosψdθ + sinψ sin θdφ ,

σ3 = dψ + cos θdφ . (3.4)

The coordinate x4 is related to ψ as

x4 = 16mψ . (3.5)

The coordinate ranges are given by π ≤ ρ < ∞, 0 ≤ θ ≤ π, φ is periodic with period

2π, and ψ is periodic with period 2π. Finally, there are two identifications under the

transformations I1 and I3 given by

I1 : (ρ, θ, φ, ψ)→ (ρ, π − θ, π + φ,−ψ) , (3.6)

I3 : (ρ, θ, φ, ψ)→ (ρ, θ, φ, ψ + π) . (3.7)
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Our interest will be in a configuration of an orientifold plane, together with a D- six brane

on top of it. According to ref. [28], theM-theory background describing this configuration

is simply the double cover N̄ of the Atiyah-Hitchin space, which is obtained by modding

out the space (3.2) by the transformation I1, but not by I3. In order that the asymptotic

radius of the x4 direction still remains equal to 16πm, we need to modify eqs. (3.1), (3.3)

and (3.5) to

ds2 = −dt2 +
10∑
m=5

dymdym + (4m)2ds2
AH , (3.8)

ρ = r/4m, x4 = 8mψ . (3.9)

This description is valid in the strong coupling limit, when the size m of the manifold is

large compared to the eleven dimensional Planck scale.

The space N̄ admits an anti-self-dual harmonic two form Ω, given by [40, 41, 42]:

Ω = F (ρ)
(
dσ1 −

fa

bc
dρ ∧ σ1

)
, (3.10)

where

F (ρ) = F0 exp
(
−
∫ ρ

π

fa

bc
dρ′
)
. (3.11)

F0 is a constant. Thus we can define a U(1) gauge field on the world volume of this

system by decomposing the three form field C of M-theory as

C(t, y, x) = A(t, y) ∧ Ω . (3.12)

This gauge field A can be identified with the SO(2) gauge field living on the world

volume of the D-brane–orientifold plane system. Note that Ω is odd under I3 and hence

is projected out on N . This explains why there is no gauge field living on an isolated

orientifold plane.

We now address the fate of the open string stretched between the D- six brane and its

image. In type IIA string theory, the classical contribution to this mass vanishes when

the D-brane coincides with the orientifold plane, but there is an oscillator contribution

of the order of the string scale. Clearly in M-theory this state should be described by a

membrane wrapped on an appropriate two cycle. In this case the most obvious choice is

again the bolt described by the surface ρ = π in the space N̄ . The correct coordinate

system around the bolt are the new angular coordinates θ̃, φ̃, ψ̃, and the shifted radial

coordinate ρ̃ defined through the relations

ρ̃ = ρ− π

σ2 = − sin ψ̃dθ̃ + cos ψ̃ sin θ̃dφ̃ ,

σ3 = cos ψ̃dθ̃ + sin ψ̃ sin θ̃dφ̃ ,

σ1 = dψ̃ + cos θ̃dφ̃ . (3.13)

In this coordinate system, the metric near the bolt takes the form

ds2
AH ' dρ̃2 + 4ρ̃2(dψ̃ + cos θ̃dφ̃)2 + π2(dθ̃2 + sin2 θ̃dφ̃2) . (3.14)
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The identification under I1 implies that ψ̃ has period π. Thus the metric is non-singular

at ρ̃ = 0 and represents the product of a plane and a sphere. The area of the sphere

spanned by θ and φ, after being rescaled by (4m)2 as is required by eq. (3.8), is given by

A = 64π3m2 . (3.15)

Since the radius R of the fourth direction is given by 8m, we see that the area is pro-

portional to R2. A membrane wrapped around this sphere will have a mass proportional

to m3
pR

2. Transformed to the string variables, this would again correspond to a mass of

order gSmS .

In order to verify that the membrane state that we have considered really represents

the open string state that we are looking for, note that near the bolt, Ω is given by

Ω ' F0

(
sin θ̃dφ̃ ∧ dθ̃ −

2

π2
ρ̃dρ̃ ∧ (dψ̃ + cos θ̃dφ̃)

)
. (3.16)

From this we see that the integral of Ω on the bolt is non-zero. Thus the wrapped

membrane state is charged under the gauge field A living on the D-brane world volume.

This is precisely what is expected of an open string stretched from the D-brane to its

image.

4 Anomalous gravitational coupling of the D-brane and the ori-

entifold plane

It has been known for sometime [29, 30] that a D- six brane in general background has

an anomalous interaction term of the form∫
C ∧ p1 , (4.1)

where C and p1 are the pull back of the three form gauge field and the pontrjagin den-

sity from the space-time to the world volume. In this section we shall derive this by

representing the six brane as the Kaluza-Klein monopole of M-theory.

In M-theory, there is an anomalous interaction term of the form [32]∫
C ∧X8(R) , (4.2)

where X8 is an appropriate eight form constructed out of the curvature tensor. We shall

now evaluate this on an eleven dimensional space of the form

(TN)×K7 , (4.3)

where (TN) denotes the Euclidean self-dual Taub-NUT space and K7 is a seven di-

mensional space with Minkowski signature. Using the identification of the Euclidean

Taub-NUT space with the transverse space of the six-brane, we can interpret (4.3) as a
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six brane with world volume wrapped on K7. Since X8 contains a term proportional to

p1 ∧ p1, and since ∫
TN

p1 = −2 , (4.4)

(4.2), evaluated in such a background gives a term of the form

a
∫
K7

C ∧ p1 , (4.5)

where a is a constant.

This is precisely the term that we wanted. It remains to verify that the coefficient a

is given correctly, but before we do that, let us note that a similar coupling between the

3-form field C and the curved orientifold six plane [33] can be derived by representing the

transverse space of the orientifold plane by the Atiyah-Hitchin space. If L7 denotes the

world-volume of the orientifold plane, we shall get a coupling of the form

b
∫
L7

C ∧ p1 , (4.6)

where the constant b is proportional to the integral of p1 on the Atiyah-Hitchin space.

We shall now show that this procedure yields the correct values of the constants a and

b. To do this, let us first note that since a D- six brane on top of an orientifold plane is

represented by the double cover of the Atiyah-Hitchin space, we have the result∫
TN

p1 +
∫
AH

p1 = 2
∫
AH

p1 . (4.7)

Thus the integral of the pontrjagin index over the Taub-NUT space and the Atiyah-

Hitchin space gives the same answer. This gives a = b, as was found in ref. [33] for the

orientifold six plane.

The overall normalization is fixed by noting that
∫
TN p1 given in (4.4) is (1/24) times∫

K3 p1. Thus a and b are (1/24) times the coefficient of the
∫
C ∧p1 term for M-theory on

K3. To see that this is the correct answer, consider type IIA of T 3/(−1)FLΩI3, where I3

denotes the reversal of sign of all the three coordinates on the torus, (−1)FL changes the

sign of Ramond sector states on the left, and Ω is the world-sheet parity transformation.

This theory has 16 D-branes and 8 orientifold planes, so the net contribution to the C∧p1

term has a coefficient equal to 24a, ı.e. equal to that of K3. But since this theory is dual

to M-theory on K3, this is precisely the correct answer.
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